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Abstract

Mathematical models of the muscle excitation are useful in forward dynamic simulations of human movement tasks. One
objective was to demonstrate that sloped as opposed to rectangular excitation waveforms improve the accuracy of forward dynamic
simulations. A second objective was to demonstrate the differences in simulated muscle forces using sloped versus rectangular
waveforms. To fulfill these objectives, surface EMG signals from the triceps brachii and elbow joint angle were recorded and the
intersegmental moment of the elbow joint was computed from 14 subjects who performed two cyclic elbow extension experiments at
200 and 300 deg/s. Additionally, the surface EMG signals from the leg musculature, joint angles, and pedal forces were recorded and
joint intersegmental moments were computed during a more complex pedaling task (90 rpm at 250 W). Using forward dynamic
simulations, four optimizations were performed in which the experimental intersegmental moment was tracked for the elbow
extension tasks and four optimizations were performed in which the experimental pedal angle, pedal forces, and joint intersegmental
moments were tracked for the pedaling task. In these optimizations the three parameters (onset and offset time, and peak excitation)
defining the sloped (triangular, quadratic, and Hanning) and rectangular excitation waveforms were varied to minimize the
difference between the simulated and experimentally tracked quantities. For the elbow extension task, the intersegmental elbow
moment root mean squared error, onset timing error, and offset timing error were less from simulations using a sloped excitation
waveform compared to a rectangular excitation waveform (p<0.001). The average and peak muscle forces were from 7% to 16%
larger and 20-28% larger, respectively, when using a rectangular excitation waveform. The tracking error for pedaling also
decreased when using a sloped excitation waveform, with the quadratic waveform generating the smallest tracking errors for both
tasks. These results support the use of sloped over rectangular excitation waveforms to establish greater confidence in the results of
forward dynamic simulations.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Forward dynamic simulations of human movement
tasks provide valuable knowledge related to the neuro-
muscular strategies of performing these tasks. These
simulations implement neuro-musculo-skeletal models
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to simulate task kinematics and kinetics and either solve
an open-ended problem (goal-directed prediction of the
kinematics and kinetics of a task) or solve a “tracking-
problem” (replication of the kinematics and kinetics of a
task). Returned by the simulations is quantitative
information regarding joint torques and muscle forces,
as well as excitation timing and activation of individual
muscles. Simulation results may be used for purposes
such as optimizing a task (Bobbert and van Zandwijk,
1999), understanding principles of motor control
(Raasch et al., 1997; Neptune and Hull, 1998), and
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minimizing the risk of injury during rehabilitation (Li et
al., 1998). Whether either simulating an open-ended
problem or solving a tracking-problem, the models
(neural, muscular, and skeletal) used must be accurate
for the simulations to return meaningful results.

The first model which is implemented in a forward
dynamic simulation is the waveform that represents the
neural excitation signals that stimulate the muscles.
These neural excitation waveforms are generally trans-
formed into muscle activations which in turn are
transformed into muscle forces that act on the body
segments to generate intersegmental loads (Zajac, 1989).
Because the neural excitation waveform is the input to
the remaining processes which must be modeled in a
forward dynamic simulation, any inaccuracy in this
excitation waveform will propagate through the entire
simulation. Therefore generating improved excitation
waveforms is a subject of high interest.

An ideal excitation waveform would (1) generate
accurate results, (2) be defined by verifiable parameters,
(3) be widely applicable, and (4) would require few
resources (e.g. time and money) to implement. Unfortu-
nately, no single excitation waveform satisfies all of
these criteria. EMG-driven models, which compute the
muscle excitation by filtering the EMG signal based on a
few parameters, can be calibrated for accuracy using one
set of experiments and verified using an additional set of
experiments (Lloyd and Besier, 2003). However, EMG-
driven models cannot be applied to simulations in which
EMG data are not readily available (e.g. simulations
involving deep muscles and open-ended simulations)
and additional resources for the calibrating experiments
are required. Static optimization methods (Anderson
and Pandy, 2003; Thelen et al.,, 2003), which track
experimental data at many instances throughout a task,
can be applied when EMG data are not available and
generate a solution considerably faster than dynamic
methods. However, static optimization methods cannot
be applied unless experimental data are available and
thus cannot be used for open-ended simulations.
Additionally, few of the large number of optimized
parameters (excitation at each instant) can be indepen-
dently verified. In contrast, two of the three parameters
defining rectangular waveforms can be verified (onset
and offset times), and these waveforms can be applied to
open-ended simulations (Raasch et al., 1997; Neptune
and Hull, 1998). However, the simplicity of rectangular
waveforms may result in decreased accuracy and their
use increases computational time compared to static
optimization methods because they are used within
dynamic optimizations.

Because of the limitations in the various excitation
waveforms mentioned above, the general aim of this
research was to demonstrate the improvement in
accuracy of forward dynamic simulations using new
excitation waveforms that also largely satisfy the

remaining criteria of an ideal waveform. Because large
discontinuities in the neural excitation are unlikely and
because EMG data suggest that the excitation has a
nonzero rise-time to its peak value, we hypothesized that
waveforms with a nonzero rise-time to their peak values
or a “‘sloped” waveform (e.g. triangular, quadratic,
Hanning) would better replicate the actual excitation
and hence improve the accuracy of forward dynamic
simulations when compared to a rectangular waveform.
Therefore, the first objective of this study was to
demonstrate any differences in tracking accuracies
between rectangular and sloped waveforms. Because
muscle forces are often of interest in simulation studies,
a second objective was to demonstrate any differences in
average and peak muscle forces using sloped excitation
waveforms versus a rectangular excitation waveform.

2. Methods
2.1. First objective

To test the hypothesis that sloped waveforms better
replicate the actual excitation compared to rectangular
waveforms and hence improve the accuracy of forward
dynamic simulations, EMG, kinematic, and kinetic data
were collected as fourteen subjects performed cyclic
experiments at the elbow joint. The subjects were
recruited from the University community and each gave
written informed consent. The data acquisition system
and experimental apparatus (Fig. 1) consisted of an
exercise ergometer, a wrist brace, three surface EMG
electrodes, a data acquisition computer with an analog-
to-digital converter, and custom data acquisition soft-
ware written with LabVIEW (National Instruments,
Austin, TX). The lateral humeral epicondyle of the
subject’s elbow on the dominant arm was aligned with
the axis of rotation of the ergometer (Cybex 6000,
Computer Sports Medicine, Norwood, MA). Domi-
nance was defined as the arm naturally used when

ergometer arm

/

wrist brace

\

electrode \

Fig. 1. Diagram of the experimental setup. During elbow flexion the
weight, attached to the ergometer arm, provided the net extensive
moment that the ergometer required for motion.
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turning a wrench. Bipolar surface electrodes (Motion-
Lab Systems, Baton Rouge, LA) were placed on the
shaved and cleaned skin over the motor endplate
(Delagi and Perotto, 1980) of each of the triceps brachii,
and the biceps brachii.

The subjects laid supine at the ergometer, with
anatomical joint positions controlled prior to the cyclic
experiments. The shoulder was at 0° flexion while the
wrist was at 0° flexion and the forearm was in the
neutral position with respect to pronation/supination.
The chest and upper arm were strapped to the
ergometer.

The maximum intersegmental elbow moment at 90°
elbow flexion was determined prior to performing any
data collection (0° flexion = full extension). Three trials
of isometric elbow extension were performed at max-
imum voluntary effort with a minimum of 2min
between trials. The maximum intersegmental elbow
moment was defined as the average moment of these
three trials.

Each subject performed two dynamic cyclic experi-
ments in which the elbow range of motion was from
approximately 10-90° flexion. The ergometer was
programmed in ‘“‘active” mode so that (1) a net
extension elbow moment was required for ergometer
motion and (2) the absolute value of the maximum
ergometer joint angular velocity in both flexion and
extension was 200°/s in one experiment and 300°/s in the
other experiment. Additionally, the ergometer arm was
weighted so that no intersegmental elbow moment was
required during elbow flexion (Fig. 1). The average
elbow moment during the extensive phase was displayed
in real time so that the subjects could target an average
intersegmental moment of approximately 0.5 muscle
activation as determined by forward dynamic simula-
tions.

To determine whether the simulation accuracy was
different between rectangular and sloped waveforms,
tracking problems were solved using a rectangular
waveform and three sloped waveforms (triangular,
quadratic, and Hanning). Data required for these
simulations were the experimental and simulated inter-
segmental elbow moments and angles throughout the
flexion-extension cycle.

The experimental intersegmental elbow joint moment
(M) was computed by performing inverse dynamic
analyses. The equation of motion was generated based
on a subject-specific rigid body model using anthropo-
metric data estimated from each subject. The rigid body
model consisted of the moment of inertia of the forearm
and hand, the forearm-hand mass, and the distance
of the center of mass of the forearm-hand to the
elbow joint axis. The anthropometric data were
estimated using scaling factors (de Leva, 1996). The
net elbow joint moment and angular position were
sampled at 500Hz, filtered with a zero-phase-shift

second-order Butterworth filter with a low-pass cutoff
of 10Hz, and then averaged across ten cycles. M was
computed over the averaged flexion-extension cycle at
every 2 ms.

The simulated intersegmental elbow joint moment
(M) was used to track M and its value was computed by
performing forward dynamic analyses using each of the
four excitation waveforms as inputs to four separate
simulations. Each of the four waveforms was defined by
three parameters: onset time, offset time, and peak
excitation.

t<ty, {u=0
t>tr {u=0
rectangular : u = p,

1c . — tr+tn
triangular: u=p+ |t — =

—2p
fr—tn )

_ —pl—(+1)/2) (1)

h<=1<=t .
quadratic : u = —my2r TP

4 . _—_ _P =t P
Hanning : u = —5 cos (Zr_tn 27‘[) +73,

where u is the excitation, ¢, is the onset time, #; the offset
time, and p is the peak excitation (Fig. 2). The excitation
waveform was passed into a first-order differential
equation modeling the activation dynamics (Zajac,
1989), and the resulting activation signal was used as
the input into the remainder of the forward simulation
model. This model has been detailed elsewhere (Camil-
leri and Hull, 2005 ). The force of each of the triceps was
computed using a Hill-type equation that required as
variable inputs the muscle activation, length, and
velocity. The muscle forces were transformed into
simulated elbow joint moments by multiplying the
forces by the triceps brachii moment arm, the sum of
these moments being M. M was determined at each
instant in time that the inverse dynamic analyses were
performed.

in]
in]

Excitation

tn tf
Time

Fig. 2. The four excitation waveforms used in the simulations
(O = rectangular, /A = triangular, O = quadratic, ¢ = Hanning). p
is the peak excitation, 7, is the onset time, and f is the offset time.
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The optimized parameter values for each excitation
waveform were determined by solving tracking pro-
blems. An initial guess of the parameter values was
made and the root mean squared error (RMSE) between
M and M was computed using the following equation:

n S YAY
RMSE = M, ()

where n is the number of data points. The parameters
were varied and optimized by minimizing the RMSE
using a simulated annecaling algorithm (Goffe et al.,
1994). To compare values across subjects, the normal-
ized RMSE was computed by dividing the RMSE by the
experimental intersegmental elbow moment averaged
across the trial being tracked.

To identify significant differences in the RMSE
between the individual waveforms post hoc tests with
Bonferonni corrections were performed. Paired ¢ tests
for each waveform pair were performed with the level of
significance set at p<0.05/b, where b =6 for the
Bonferonni correction, so that the experiment-wise level
of significance was 0.05.

Because the muscle onset and offset times were not
used as tracking quantities, the errors between the
experimental and simulated onset and offset times were
used as independent measures of accuracy of the
waveforms. The experimental muscle onset and offset
times were determined using the EMG data. The EMG
data were sampled at 1000 Hz, full-wave rectified, and
then low-pass filtered with a zero-phase-shift second-
order Butterworth filter with a cutoff of 10 Hz. The data
were then resampled at 500 Hz so that the sampling rate
was the same as that used in the simulations. The
resampled data for each subject were then averaged
across 10 cycles. The muscle onset was defined to occur
when the EMG activity increased to greater than 3
standard deviations of the baseline EMG activity
(Bedingham and Tatton, 1984) that was collected prior
to exercising with the elbow at 90° flexion and the
musculature at rest. Muscle offset was defined to occur
when the EMG activity decreased to below 3 standard
deviations of the baseline. To identify significant
differences in the onset and offset times between the
individual waveforms post hoc tests with Bonferonni
corrections were performed. Paired ¢ tests for each
waveform pair were performed for both onset and offset
times with the level of significance set at p<0.05/b,
where b = 12 for the Bonferonni correction, so that the
experiment-wise level of significance was 0.05.

To determine whether sloped excitation waveforms
provide better tracking accuracies than a rectangular
excitation waveform for a relatively complex task, the
tracking errors for simulations using rectangular,
triangular, quadratic, and Hanning excitation wave-
forms were computed and compared for a pedaling task.

The musculo-skeletal model and optimization routine
were similar to that detailed in Neptune and Hull (1998)
except that the body was oriented in a recumbent
position to reflect the experimental data that were
tracked (recumbent pedaling at 90rpm and 250 W,
Hakansson and Hull, 2005). The quantities tracked were
the right pedal angle, crank torque, ankle, knee, and hip
intersegmental moments, and the horizontal and vertical
pedal forces averaged across all subjects.

Pedal angle data and subject limb kinematics were
determined using high-resolution video-based motion
analysis (Motion Analysis Corp., Santa Rosa, CA). Two
spherical reflective markers were placed 30-cm apart in
line with the top surface of the pedal and three spherical
markers were placed at three fixed points on the
ergometer. These two sets of markers were used to
develop virtual markers to identify the pedal and crank
spindles. Spherical markers were also placed over the
anterior superior iliac spine, greater trochanter, lateral
epicondyle, and lateral malleolus of the right leg of each
subject to capture the limb kinematics. Four high-speed
video cameras recorded the three-dimensional marker
positions. The three-dimensional marker positions were
then projected on the sagittal plane as defined by the
path of the pedal spindle. The pedal forces were
measured using a two-load component pedal dynam-
ometer (Newmiller et al., 1988). The experimental
kinematic and kinetic data recorded as the subjects
pedaled the ergometer were used to compute the
intersegmental moments using a standard inverse
dynamics approach.

The sagittal-plane skeletal model consisted of the
pelvis fixed in the ergometer frame with joint motions at
the hips, knees, ankles, pedal spindles, and crank
spindle. Twenty-eight musculo-tendon complexes were
included within nine functional muscle sets. Muscle
excitations were passed into a first-order differential
equation modeling the activation dynamics (Raasch et
al., 1997), and the resulting activation signals were used
as the inputs into the remainder of the forward
simulation model. Muscle forces were computed using
a Hill-type equation that required as variable inputs the
muscle activation, length, and velocity. Due to dynamic
coupling both the body segments and joints were
accelerated by these forces, producing simulated data
that were used to track the experimental data. Tracking
was performed by minimizing the RMSE of the pedaling
quantities normalized to the intersubject standard
deviation (NRMSE):

NRMSE =

\/271127_1((& ~ ¥,*/sD}) o

mn
where Y} is the experimentally measured data, Y7 is the

model data, n is the number of data points, m =7,
the number of tracking quantities, and SD; is the
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intersubject standard deviation. The tracking errors
(NRMSE) were then compared between simulations
from the four excitation waveforms. Similar to the
elbow extension task, the errors between the experi-
mental and simulated onset and offset times were used
as independent measures of accuracy of the waveforms.
Onset and offset timing errors were averaged across the
muscles within a simulation and these results were
plotted against the waveform to demonstrate any
differences.

2.2. Second objective

To demonstrate the differences in elbow extension
simulation results when using the four excitation wave-
forms, both the average and peak muscle forces were
determined when using each of the sloped waveforms
and the rectangular waveform. The average muscle force
was computed over the time that the muscle was active.
Two normalization procedures were performed to
control for differences in both muscle strength and
activation. First, to control for differences in muscle
strength, both force quantities were divided by the
maximum isometric muscle force. Second, to control for
differences in activation, these quotients were then
multiplied by the ratio of the average to maximum
experimental intersegmental elbow moment; the average
was computed over the particular cycle and the
maximum was determined from the isometric tests. To
identify significant differences in the normalized average
and peak muscle forces between the individual wave-
forms post hoc tests with Bonferonni corrections were
performed. Paired 7 tests for each waveform pair were
performed for both the normalized average and peak
muscle forces with the level of significance set at

p<0.05/b, where b = 12 for the Bonferonni correction,
so that the experiment-wise level of significance was
0.05.

To demonstrate the differences in pedaling simulation
results when using the four waveforms, both the average
and peak muscle forces for each of the muscles were
determined when using each of the sloped waveforms
and the rectangular waveform. The average muscle force
was computed over the time that the muscle was active.
A normalization procedure was performed to control
for differences in muscle activation between the muscles
so as to present averages of the peak muscle forces.
Within each muscle the peak muscle forces returned
from each simulation were divided by the average from
all simulations (thus variation about 1.0). These
quotients were then averaged across all muscles within
a simulation and then plotted against the waveform to
demonstrate any differences. An identical normalization
and averaging process was performed for the average
muscle force.

3. Results

The interrelationships between the EMG, elbow
intersegmental moment, and elbow flexion angle were
as expected. EMG activity and the intersegmental
moment began to rise near the beginning of extension
(Fig. 3), peaked near mid-extension, and fell to zero near
the end of extension. All three quantities demonstrated a
single phase that lasted approximately half of the cycle.

The pedal forces, pedal angle, and intersegmental
moments developed during recumbent pedaling at 90
RPM and 250 W (Fig. 4) were similar to those developed
in normal upright pedaling (Neptune and Hull, 1998).

5
T —A— NEMG
4 —B— Normalized
_ Intersegmental
- Moment
3 /E J/\J\

n

\ —O— Flexion Angle

NEMG, Normalized Intersegmental
Moment, Flexion Angle (rad)

Cycle Time (%)

Fig. 3. Experimental elbow data averaged across subjects (n = 14). The cycle time begins at the midpoint of flexion. NEMG is the EMG normalized
to the maximum isometric EMG. The normalized intersegmental moment is normalized to the intersegmental moment averaged across the cycle. The

flexion angle is expressed in radians, with full extension at O rad.
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Fig. 4. Experimental pedaling data in the recumbent position averaged across subjects (n = 15). A crank angle of 0° is defined when the right crank is
oriented 54° counter-clockwise from top-dead center when viewed from the right side. A positive hip intersegmental moment indicates a flexion
moment, a positive knee intersegmental moment indicates an extension moment, and a positive ankle intersegmental moment indicates a dorsi-flexion

moment.

Additionally, the EMG data demonstrated similar
timing between recumbent and normal upright pedaling
(Hakansson and Hull, 2005).

3.1. First objective

The simulated elbow extension tasks using different
excitation waveforms demonstrated significant differ-
ences in both tracking and timing errors (p<0.001).
Tracking errors were significantly different between all
waveform pairs, with the simulations using sloped
waveforms demonstrating smaller tracking errors than
simulations using rectangular waveforms (Fig. 5). The
simulations using the quadratic waveforms had the
smallest tracking errors. Both onset and offset errors
were significantly different between all waveform pairs
(»<0.001), with the simulations using sloped waveforms
demonstrating smaller timing errors than simulations
using rectangular waveforms (Fig. 6). While the simula-
tions using quadratic waveforms demonstrated onset
timing with the smallest errors, the simulations using

Hanning waveforms demonstrated offset timing with the
smallest errors.

The trends of the tracking errors versus waveform for
the pedaling task were similar to those of the elbow
extension task (Fig. 5). Tracking errors were smaller
using sloped waveforms than using the rectangular
waveform (from 2 to 15% relative to the rectangular
waveform) with the smallest error occurring for the
quadratic waveform. Timing errors also were smaller
using sloped waveforms (from 29% to 79% relative to
the rectangular waveform) (Fig. 7).

3.2. Second objective

For the elbow extension task both the average and
peak muscle forces were significantly different for all
waveform pairs (p<0.001) except one. The peak muscle
forces from simulations for the quadratic and triangular
waveform pair were not significantly different
(p = 0.0045). Simulations using rectangular waveforms
consistently overestimated these quantities when com-
pared to simulations using sloped waveforms (Fig. 8),
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Fig. 5. Normalized RMSEs from the simulations using the four excitation waveforms for both the elbow extension task (unfilled bars) and the
pedaling task (filled bars) (RECT = rectangular, TRI = triangular, QUAD = quadratic, HANN = Hanning). For both tasks RMSEs were lower for
the sloped waveforms than those for the rectangular waveform. The RMSEs were significantly lower for the elbow extension task (p<0.001).
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Fig. 6. Onset timing errors (unfilled bars) and offset timing errors (filled bars) from the simulations using the four excitation waveforms for the elbow
extension task (RECT = rectangular, TRI = triangular, QUAD = quadratic, HANN = Hanning). Positive values indicate that the simulated timing
occurred later than the experimental timing. Errors were significantly lower for the sloped waveforms than those for the rectangular waveform

(p<0.001).

with the average muscle force overestimated from 7% to
16% and the peak muscle force overestimated from 20%
to 28%, relative to the rectangular simulations (Table 1).
These quantities were similarly overestimated in the
pedaling task using rectangular waveforms, with the
average muscle force overestimated from 10% to 21%
and the peak muscle force overestimated from 21% to
27%, relative to the rectangular simulations (Fig. 9).

4. Discussion

Although forward dynamic simulation of movement
tasks is a powerful technique for providing insight into

the muscle control strategies and loading of musculo-
skeletal structures during these tasks, the excitation
waveforms used previously have various limitations.
Accordingly, one objective of this study was to test the
hypothesis that sloped excitation waveforms with a
minimum number of waveform parameters that do not
require calibrating experiments better replicate the
actual excitation than a rectangular waveform and
hence provide more accurate simulation results. A
second objective was to compare the differences in the
simulation results generated by rectangular and sloped
excitation waveforms. An important finding related to
the first objective was that the optimized sloped
excitation waveforms generate simulation results with
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significantly smaller forces than those for the rectangular waveform (»p<0.001).

Table 1

triangular, QUAD = quadraticc, HANN = Hanning). Sloped waveforms demonstrated

Percent differences in tracking RMSE and simulated force quantities for each of the waveform pairs for the elbow extension task

Waveform pair

Normalized tracking RMSE

Normalized Fyyg

Normalized Fpeax

RECT and TRI
RECT and QUAD
RECT and HANN
TRI and QUAD
TRI and HANN
QUAD and HANN

16.4
25.6
21.7
11.1
6.4
-5.3

11.9

6.9

16.0
—5.6

4.7
9.8

20.3
21.5
27.9
1.6
9.5
8.1

RECT = rectangular, TRI =

Triangular, QUAD = quadratic, HANN = Hanning.All percentages are expressed as the difference between the first

and second waveform normalized to the first waveform in a pair. All pairs were significantly different (p <0.001) except for TRI and QUAD for Fycax

(p = 0.0045).
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Fig. 9. Normalized average (unfilled bars) and peak (filled bars) muscle forces from the simulations using the four excitation waveforms for the
pedaling task (RECT = rectangular, TRI = triangular, QUAD = quadratic, HANN = Hanning). Forces were lower for sloped waveforms than

those for the rectangular waveform.

less error than those results generated using rectangular
excitation waveforms. An important finding related to
the second objective was that rectangular excitation
waveforms lead to average and peak muscle forces being
overestimated.

The most important finding of our study is that
forward dynamic simulations that use optimized sloped
excitation waveforms more accurately track the kine-
matics and kinetics (Fig. 5) and the onset and offset
timing of the excitation (Figs. 6 and 7) of submaximum-
effort repetitive dynamic tasks than simulations using a
rectangular excitation waveform. Accordingly, it is
reasonable to accept that the muscle quantities com-
puted are more accurate as well for the sloped wave-
forms (Table 1). The differences in the intersegmental
moments, onset and offset timing, and/or muscle forces
are large enough that conclusions drawn from forward
dynamic simulations may differ depending on the
excitation waveform used.

Four potentially competing factors in developing a
forward dynamic model are accuracy, the ability to
verify input parameters, applicability, and the amount
of resources to implement the model. Two of the
three control parameters (onset and offset time)
defining rectangular excitation waveforms can be
verified by comparing these values to EMG data (Piazza
and Delp, 1996; Raasch et al., 1997; Neptune and
Hull, 1998). However, accuracy may be compromised if
the simulated excitation waveform does not replicate
important features of the actual excitation. More
complex simulated excitation waveforms (i.e. increased
number of control parameters) have been derived
from piecewise-continuous multinodal excitation signals
(Anderson and Pandy, 2003; Thelen et al., 2003).
Because a greater number of control parameters

will allow for a larger range of simulated Kkinetic
and kinematic frequencies, accuracy is expected to
improve when performing a tracking problem.
However, verification becomes difficult when individual
control parameters are not measurable. The para-
meters defining EMG driven models may be calibrated
for high simulation accuracy (Lloyd and Besier,
2003) and EMG-driven models may provide insight
into the effects of different excitation patterns on the
same task. However, these models cannot be applied to
muscles in which the EMG signal is not available (e.g.
deep muscles and muscles simulated in open-ended
optimization problems) and additional resources must
be used to calibrate the model. While each waveform
method has its advantages, sloped excitation waveforms
provide a balance in accuracy (they are more accurate
than rectangular waveforms), verification (a greater
percentage of the control parameters can be verified
than in static optimization methods), application (they
can be used in both tracking and open-ended simula-
tions), and resources (no calibrating experiments are
required).

The analyses of the elbow-extension and pedaling
simulations complemented each other. The single-
degree-of-freedom elbow extension task provided great-
er experimental control and required a simpler model
with fewer potential sources of error and variability.
Pedaling represented a more complex activity with
which to test the hypothesis that sloped waveforms
generate more accurate simulations than rectangular
waveforms. While the sloped waveforms did generate
smaller tracking errors than a rectangular waveform
(from 1% to 6%), these differences were not as large as
those in the elbow extension simulations (from 16% to
26%, Table 1).
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The smaller differences in tracking errors when using
sloped excitation waveforms for the pedaling task than
the elbow extension task were likely due more to the
complexity of the task and the attendant model than the
ability of sloped excitation waveforms to accurately
model the neural excitation. Whereas a single burst, or
phase, of activity was demonstrated for the elbow
extension tasks, some of the muscles during pedaling
have more than one burst, or multiphasic excitation
(Hakansson and Hull, 2005). However, multiphasic
EMG is demonstrated only in the muscles crossing the
ankle. These muscles contribute relatively little of the
total work during a crank cycle (Raasch et al.,1997), so
that using multiphasic excitation waveforms for these
muscles in simulation trials did not improve simulation
results. However, in other tasks where the excitation is
multiphasic and the work of the muscles is substantial,
the use of multiphasic waveforms may be advantageous.
Multiphasic waveforms can be easily constructed by
using a summation of two (or more) of the sloped
excitation waveforms presented herein.

While many different sloped excitation waveforms
could have been used in this study, the three used were
chosen for specific reasons. Most important was that all
three were defined by the same number of parameters (3)
as a rectangular waveform. Optimizing a greater number
of parameters would inherently generate smaller track-
ing errors and thus would introduce a confounding
variable. The triangular waveform represented, in a
sense, the opposite of a rectangular waveform in that the
slope of a triangular waveform is as small as possible.
The Hanning waveform, with a first-derivative contin-
uous throughout the cycle, represented the continuous
nature of muscle recruitment. Finally, the quadratic
waveform represented a slope in between those of the
rectangular and triangular.

In the comparison of elbow extension simulation
results for the various waveforms, the effects of errors
generated from inaccurate estimates of physiological
cross-sectional areas, muscle rest length (as defined in
Zajac, 1989), pennation angle, shape of the length-
tension relationship were minimized because the same
model was used in all simulations within a subject.
Consequently, any error would be present as a compar-
able bias in all simulations within a subject. Thus this
bias had minimal effects on the results because the
analyses considered differences between the simulation
results within a subject.

In summary, cyclic elbow extension and pedaling tasks
provided an effective means by which to validate the use
of sloped excitation waveforms in forward dynamic
simulations. Sloped excitation waveforms better replicate
the EMG onset and offset timing and, when used in
forward dynamic simulations, generate more accurate
tracking than a rectangular waveform. Simulations using
rectangular waveforms may overestimate the actual

muscle forces. The use of sloped excitation waveforms
increases the accuracy of, and confidence in, results from
forward dynamic simulations.
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