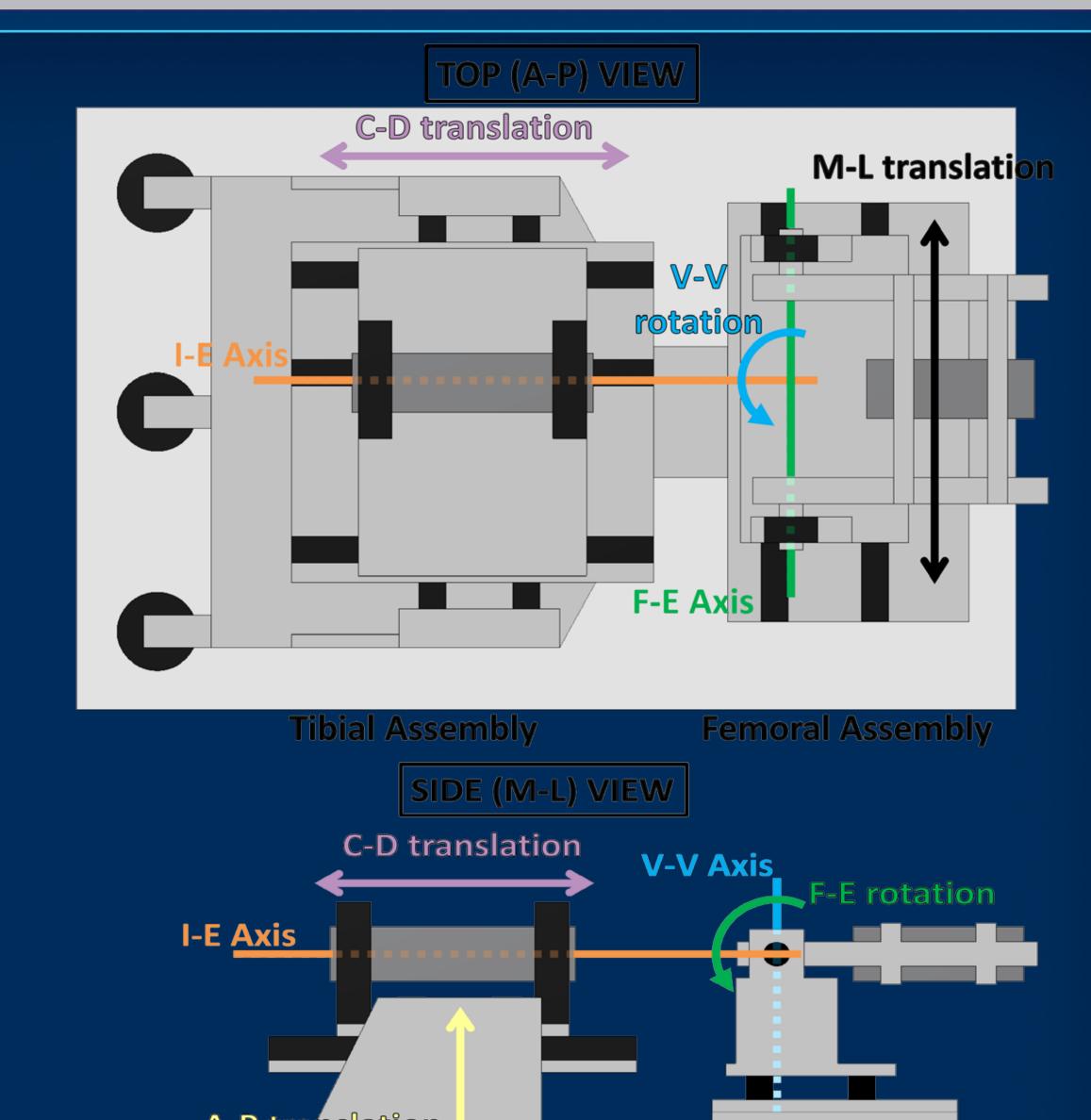


download poster

Laxities of the Normal Knee at 0° and 90° Flexion: A Benchmark for Assessing Soft Tissue Balance in TKA Joshua D. Roth¹, Stephen M. Howell^{1,2}, Maury L. Hull^{1,2,3}

¹Biomedical Engineering Graduate Group; ²Department of Mechanical Engineering; ³Department of Biomedical Engineering, University of California, Davis, Davis, CA

INTRODUCTION

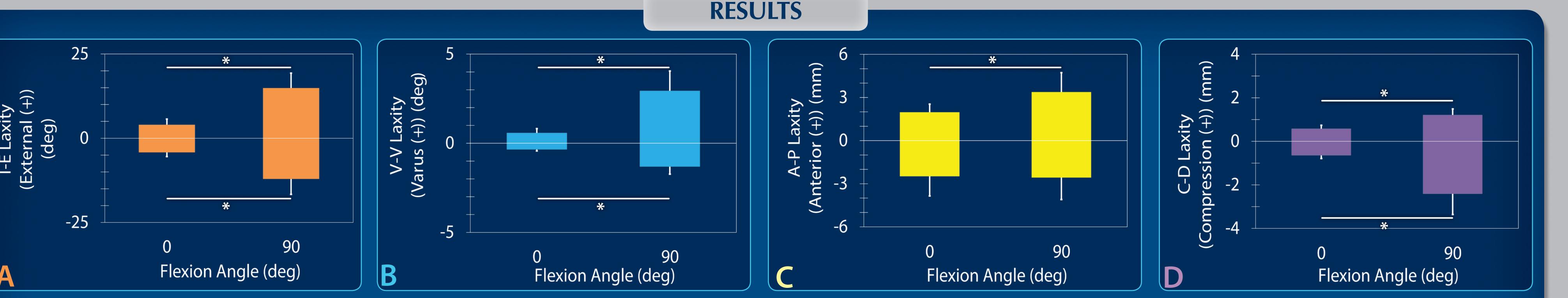

Soft tissue balancing is a critical step in total knee arthroplasty (TKA). Surgeons often assess balance at 0° and 90° flexion primarily considering varus-valgus¹⁻³ and distraction⁴ laxity. However both anterior-posterior translation and internal-external rotation are also important degrees of freedom. Therefore it is important for surgeons to understand the laxity of the normal knee at 0° and 90° in all four of these degrees of freedom to determine whether the soft tissues are properly balanced. Accordingly, the objective of this study was to measure the laxities of the normal knee at 0° and 90° flexion in internal-external (I-E) and varus-valgus (V-V) rotation and in anterior-posterior (A-P) and compression-distraction (C-D) translation to provide a benchmark for soft tissue balancing in TKA.

Seven fresh-frozen, cadaveric knees were included (average age: 69 years, range: 57 to 85 years). Specimens were free from degenerative joint disease, soft tissue damage, and evidence of previous surgery to the knee.

Following preconditioning, the laxity in I-E, V-V, A-P, and C-D were measured at 0° and 90° flexion using the load application system (Figure 1).

Figure 1. Functional schematic showing the six degrees of freedom of the load application system². The A-P, M-L, and C-D translational degrees of freedom are allowed by linear bearings translating along linear rails. The F-E and I-E rotational degrees of freedom are allowed by rotation of radial ball bearings. V-V DOF is allowed by rotation of radial ball bearing and three air bearings.

The applied loads used to define the laxity were \pm 3 N-m for I-E rotation⁵, \pm 5 N-m for V-V rotation⁶, \pm 45 N for A-P translation⁷, and \pm 100 N for C-D translation⁸. Throughout testing, a 45 N compressive tare load was applied to the tibia to simulate the passive compression created by the soft tissues that were transected during dissection.


2014

ANNUAL

ORS

The laxity at 0° and 90° flexion in each degree of freedom was described by the mean and standard deviation of the seven knees at each flexion angle. Differences in the laxity for each degree of freedom between 0° and 90° flexion were analyzed using a paired t-test with a level of significance of p<0.05.

gure 2. Four bar charts display the laxity in (A) I-E, (B) V-V, (C) A-P, and (D) C-D for the normal knee at 0° and 90° flexion. Error bars show one standard deviation.

2. Okazaki, K., et al., J Orthop Sci, 2006. 4. Griffin, F.M., et al., The Journal of Arthroplasty, 2000. 6. Markolf, K.L., et al., J Bone Joint Surg Am, 1976. 8. Mayman, D., et al., Clin Orthop Relat Res, 2009.